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Abstract

This report investigates a technique to calculate the distributions of
discretization errors for a model of advection-diffusion-reaction with stochas-
tic noise in problem data. The focus is on operator-split discretization
methods. The error is decomposed into components due to the split-
ting and due to the discretization within each component. We present
a method to estimate the distributions of the total discretization error
for a quantity of interest as well as the aforementioned error components.
These computations require information about the propagation of un-
certainty within and between code modules, for which purpose we use a
flexible code framework for uncertainty quantification. Computational ex-
amples illustrate that in certain cases the distribution of numerical error
can have a significant impact on the code output. Using information about
the components of the numerical error, decisions can be made regarding
discretization parameters to efficiently reduce the impact of numerical
error on the distribution of model outputs.

1 Introduction

Uncertainty quantification (UQ) for multi-physics simulation seeks to provide
insight into the meaning of computational model outputs as they relate to the
prediction of physical phenomena. Stochastic noise in model data induces a
statistical distribution in model outputs, which may often be quantified approx-
imately using numerical techniques. Many factors must be accounted for to
explain the ensuing discrepancies with respect to observations. One factor is
the use of discretization techniques for the equations representing the physical
processes. These techniques introduce numerical errors that may significantly
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influence the distribution of model outputs and potentially provide a poor rep-
resentation of the underlying multi-physics model equations.

Multi-physics codes are often constructed by coupling together code mod-
ules that are highly-optimized for the resolution of physical sub-processes. In
the current context, for example, we consider coupling three modules that
approximate the advection, diffusion and reaction processes, respectively, via
an operator-splitting technique to create a multi-physics model for the full
advection-diffusion-reaction system. In addition to the distribution of the to-
tal discretization error for a multi-physics model, it is desirable to understand
how the discretization errors for each separate module and the splitting error
contribute to the total error budget. Then decisions can be made regarding the
allocation of computational resources to control the global error budget. This
report focuses on the quantification of the distribution of discretization errors
for a model of advection-diffusion-reaction. These computations require infor-
mation about the propagation of uncertainty within and between code modules,
for which purpose we use a special, flexible code framework.

In order to model some physical process that is believed to essentially be
a coupled advection-diffusion-reaction process, one might hypothesize that the
following model, for example, closely resembles reality in some open spatial
domain S ⊂ Rd:

∂tc+∇ · (v(x)c) +Rc = D∆c, (x, t) ∈ S × (0, T ], (1.1)

c = g, (x, t) ∈ ∂S × (0, T ], (1.2)

c(x, t = 0) = c0(x), x ∈ S, (1.3)

where v(x) is a prescribed flow field, R is a reaction coefficient and D > 0 is
a diffusion coefficient. The solution is c : S × [0, T ] → R, which may represent
the concentration of some chemical species. Consider that the flow field, the
reaction coefficient and the diffusion coefficient may be uncertain and are mod-
eled as independent, second-order random variables (r.v-s) over a probability
space (Ω,Θ, P ), where Ω is the sample space, Θ is a σ-algebra on Ω and P is a
probability measure. Then c is a dependent r.v. and we require that the above
SPDE problem is solvable almost surely.

Various methods exist to model the propagation of uncertainty and to dis-
cretize the PDE. Ultimately, some finite-dimensional representation c̃ ≈ c is
calculated, which could be considered as the model for the physical process. In
this case, since c̃ will not exactly represent reality, there is some model form
error ε(c̃) such that the real distribution as observed by experiment (in the
absence of observational errors) is c̃+ ε(c̃).

Recall that for a r.v. X defined on the probability space (Ω,Θ, P ), the ex-
pected (mean) value E[X] is

E[X] =

∫
Ω

X(ω) dP (ω).

Our goal is to obtain more information about the structure of ε(c̃) by hypothe-
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sizing that

E
[
‖ε(c)‖L∞(S×[0,T ])

]
< E

[
‖ε(c̃)‖L∞(S×[0,T ])

]
.

Our meaning is that we expect c may be a better model of reality (c+ε(c)) than
c̃ since c̃ is derived by approximating c. Under this assumption, it is useful to
consider

c = (c− c̃) + c̃ = e+ c̃.

Assume that we are interested in a measurement M (c) of c and that the
measurement may be written in the form

M (c) =

∫
Ω

G(x) c(x, t = T ) dx, (1.4)

where G(x) is known as the generalized Green’s function for the measurement.
Then we seek to estimate the discrepancy

eM =M (c)−M (c̃) , (1.5)

which is a r.v. by definition.
Specifically, we are interested in the case when the reaction, diffusion and

advection processes are separated by operator-splitting. We assume that a code
module for each process is available, and that they are sequentially coupled
in some manner to evolve c̃ in time. The propagation of stochastic noise may
be handled using a hybrid method of uncertainty quantification, whereby each
discrete degree of freedom is represented as a random variable with a trun-
cated polynomial chaos (PC) expansion that accounts for the global r.v. -s.
The stochastic analysis is discussed in Section 2. The internal propagation of
uncertainty may either be intrusive or not.

The discrepancy e will generally be affected by (1) the splitting approxima-
tion; (2) the application of numerical methods for the advection, diffusion and
reaction subproblems; and (3) truncation of the PC expansion used to represent
the stochastic process. In order to obtain more information about the effects of
the choices of splitting method and numerical methods, we further decompose

e = (c− cs) + (cs − c̃).

Here, cs is obtained by splitting the operators in the original problem (1.1) for
c before choosing space and time discretizations for the resulting subproblems
or truncating the PC expansion.

We consider a first-order sequential splitting method to define cs. Let ∆t =
T/NT be a time step size for some NT ∈ N, and tn = n∆t for n = 0, 1, . . . , NT .
We first define the split solution at the discrete times. Let cs(x, t

n) = cns (x),
where c0s = c0 and the functions cn+1

s for n ≥ 0 are found from the following
procedure.

• Step 1: Solve for ca satisfying

∂tca +∇ · (v(x)ca) = 0, (x, t) ∈ S × (tn, tn+1], (1.6)

ca = ga, (x, t) ∈ ∂S × (tn, tn+1], (1.7)

ca(x, t = tn) = cns (x), x ∈ S. (1.8)
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• Step 2: Solve for cd satisfying

∂tcd = D∆cd, (x, t) ∈ S × (tn, tn+1], (1.9)

cd = gd, (x, t) ∈ ∂S × (tn, tn+1], (1.10)

cd(x, t = tn) = ca(x, tn+1), x ∈ S. (1.11)

• Step 3: Solve for cr satisfying

∂tcr +Rcr = 0, (x, t) ∈ S × (tn, tn+1], (1.12)

cr(x, t = tn) = cd(x, tn+1), x ∈ S. (1.13)

• Step 4: set cn+1
s (x) = cr(x, tn+1).

• Step 5: set n = n+ 1 and repeat Step 1 - Step 4 until n = NT .

Then cs(x, t) may be defined as some suitable extension of {cns (x)}n=NT
n=0 in

time, such as by using interpolation. Note that we allow for the reaction and
advection-diffusion substeps to use different boundary conditions. These should
be consistent with what is implemented in the code to generate c̃.

The corresponding decomposition for eM is assigned the following meaning:

splitting error: esplit = M (c)−M (cs) ; (1.14)

module discretization error: edisc = M (cs)−M (c̃) . (1.15)

The module discretization error may in turn be further decomposed:

edisc = eA + eD + eR + einterp + eIC . (1.16)

Here eA, eD and eR are the error contributions from the advection, diffusion
and reaction module discretizations, respectively. If the grids differ between the
modules then einterp may be included as the error contribution from interpolat-
ing between grids. The error from approximating initial data is eIC .

The distributions of the error components will be estimated using adjoint
methods, described below. The effect of the splitting is then determined by
the relationship eM = esplit + edisc (just add (1.14) and (1.15) to get (1.5)).
We will begin by presenting the flexible-UQ method to track the propagation
of uncertainty in the error within and between each module, then explain the
adjoint methods to calculate estimates of the error components.

2 Flexible-UQ Formulation

Given a second-order random variableX defined on the probability space (Ω,Θ, P ),
the variance of X is denoted by V ar(X), satisfying

V ar(x) = E[X2]− (E[X])2,
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and the standard deviation σ ≥ 0 is σ =
√
V ar(X). The random variable X

may be expressed using an expansion in terms of polynomials over the stochastic
space that are orthogonal with respect to the density of X:

X = X0 +

∞∑
j1=1

Xj1Ψ1(ξj1) +

∞∑
j1=1

j1∑
j2=1

Xj1,j2Ψ2(ξj1 , ξj2) + . . .

There are m dimensions for the random variable, ξ = (ξ1, . . . , ξm). This PC
expansion is then truncated to some order p. For convenience, we use a single-
index format for the truncated PC expansion with P + 1 = (p + m)!/(p!m!)
terms:

X̂ =

P∑
j=0

XjΨj(ξ).

If X,Y are r.v-s , we denote by 〈XY 〉 the integral of XY over the entire stochas-
tic space, with appropriate extension to products of more r.v-s . The expected
value and variance for X̂ are

E[X̂] = X0

V ar(X̂) =

P∑
j=0

X2
j 〈Ψ2

j 〉.

We will assume for now that all the r.v-s being discussed have the same
density. The independent r.v-s are v = 〈v1, . . . , vd〉, D, and R. Uncertainties
are propagated globally by using a PC expansion with d + 2 r.v-s to order p
so that there are Pg = (d + 2 + p)!/((d + 2)!p!) coefficients. The calculation of
numerical errors will use information about the propagation of solution infor-
mation through each module. Since the individual modules do not make use
of all of the global r.v-s some way to propagate the global uncertainty through
the local module is needed. For this purpose we make use of the technique
described in [1]. The degrees of freedom for the global PC expansion may be
calculated from the output of a module by running successively with different
input configurations.

Internally, we require Pa = (d + p)!/(d!p!) expansion coefficients for the
advection module and Pdr = (1 + p)!/(p!) = p + 1 expansion coefficients for
the diffusion and reaction modules. The details of how to specify the input
configurations are provided in [1]; we instead focus here on the computation
of numerical errors. We shall see that these calculations require the ability to
determine these input configurations and properly distinguish between local and
global propagation of uncertainty.

3 Adjoint Method to Calculate eM and edisc

In this section we describe the method to calculate eM and edisc as r.v-s using
adjoint methods. First, we introduce the adjoint problem for e. The Green’s
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function data G is used as the final time data for the adjoint problem:

−∂tφ− v · ∇φ+Rφ = D∆φ, (x, t) ∈ S × [0, T ), (3.1)

φ = 0, (x, t) ∈ ∂S × [0, T ), (3.2)

φ(x, t = T ) = G(x), x ∈ S. (3.3)

We will consider finite volume spatial discretizations, though our method ap-
plies more generally. Assume a uniform, Cartesian spatial grid Sh where h > 0
is the grid size. Given a grid element K with center x = (x1, . . . , xd), the grid

element is defined as K =
∏d

i=1[xi − h/2, xi + h/2]. Let tn for n = 0, 1, . . . , N
be discrete time levels for the purposes of time discretization. Given an arbi-
trary function v, assume that some space and time discretization is applied to
approximate v. We denote by vh a continuum representation for the ensuing
approximation, which takes the form of a polynomial on each grid element in
space and in time is a polynomial on each discrete time interval. We assume
global continuity of vh in time, and in fact c̃ ∈ C0(0, T ;L2(S)), but we allow vh
to be discontinuous across grid element interfaces. We denote the interior trace
of a function v restricted to an element by v−, and the exterior trace for non-
boundary edges by v+. The jump in values across an interface is [v] = v+ − v−
and the average is {v} = (v+ + v−)/2. Furthermore, we define for convenience

∂K+ = {x ∈ ∂K : v(x) · n̂K > 0} .

The truncated PC expansion for an arbitrary function v is v̂. Thus, v̂h is
fully-discrete, whereas vh is only discrete in space and time. The approximation
c̃ of the advection-diffusion-reaction problem is taken to be c̃ = ĉh.

The equation for eM is given by (see e.g. [3, 2] for details):

eM =

∫ T

0

∫
S

(−∂tc̃−∇ · (vc̃) +D∆c̃−Rc̃)φdx dt

+
∑
K∈Ωh

∫ T

0

∫
∂K+\∂Ω

(Dφ(n̂K · ∇[c̃])−D(n̂K · ∇φ)[c̃]− (v · n̂K)φ[c̃]) d(∂S) dt

−
∫ T

0

∫
∂S

D(n̂ · ∇φ)(g − c̃) d(∂S) dt+

∫
S

(c0 − c̃(t = 0))φ(t = 0) dx. (3.4)

There will be a limit to our knowledge of the numerical error due to inexact
knowledge of the adjoint solution, including uncertainty and discretization er-
rors. Denote by φ̃ some fully-discrete approximation to φ and let φ = φ̃+φHO.

Note that the right hand side of (3.4) may be written in the form

eM = F(c̃, φ) + L(φ), (3.5)

where F is bilinear and L is linear. It follows that

eM =
(
F(c̃, φ̃) + L(φ̃)

)
+ (F(c̃, φHO) + L(φHO)) .
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The first two terms on the right hand side are fully computable. The other
terms will be neglected for the purposes of this report, i.e. they are assumed to
be negligible. This assumption will hold if the relative accuracy of the approx-
imation φ̃ is very good, i.e. if |φHO| � |φ|, as explained in the deterministic
case in e.g. [3, 2].

So far, the flexible-UQ framework is employed to generate the PC expansion
for c̃, which is used at each time step and every spatial degree of freedom to
calculate the error approximation. We shall see that the remaining components
of the discretization error will also require the use of the flexible-UQ framework.

Before describing the equation for edisc, we first introduce some notation.
We let c̃a be some discrete approximation to the solution of (1.6)-(1.8) (usually
just linear in time on the local time interval). Similarly, let c̃d and c̃r represent
the discrete solutions of the diffusion and reaction modules.

On each local time interval we will derive local discretization error estimates
by using the adjoint to (1.6)-(1.13). This adjoint problem may be expressed as
follows, with φNT

s = G.

• Step 1: Solve for φr satisfying

−∂tφr +Rφr = 0, (x, t) ∈ S × [tn, tn+1), (3.6)

φr(x, t = tn+1) = φs(x, t
n+1), x ∈ S. (3.7)

• Step 2: Solve for φd satisfying

−∂tφd = D∆φd, (x, t) ∈ S × [tn, tn+1), (3.8)

φd = 0, (x, t) ∈ ∂S × (tn, tn+1], (3.9)

φd(x, t = tn+1) = φr(x, tn), x ∈ S. (3.10)

• Step 3: Solve for φa satisfying

−∂tφa − v · ∇φa = 0, (x, t) ∈ S × [tn, tn+1), (3.11)

φa = 0, (x, t) ∈ ∂S × (tn, tn+1], (3.12)

φa(x, t = tn+1) = φd(x, tn), x ∈ S. (3.13)

• Step 4: set φns (x) = φa(x, tn).

• Step 5: set n = n− 1 and repeat Step 1 - Step 3 until n = 0.

The expression for edisc is derived by starting on the last time step, noting
that (cs − c̃)(t = T ) = (cr − c̃r)(t = T ) and recalling that φs(t = T ) = φr(t =
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T ) = G. Thus, we have

edisc =

∫
S

G(cs − c̃)(t = T ) dx =

∫
S

φr(t = T )(cr − c̃r)(t = T ) dx

=

∫
S

φr(t = T )(cr − c̃r)(t = T ) dx−
∫ T

T−∆t

∫
S

(−∂tφr +Rφr)(cr − c̃r) dx dt

=

∫
S

{φr(cr − c̃r)} (t = T −∆t) dx−
∫ T

T−∆t

∫
S

(∂t(cr− c̃r) +R(cr− c̃r))φr dx dt

=

∫
S

{φr(cr − c̃r)} (t = T −∆t) dx+ eNT
r ,

where eNT
r = −

∫ T

T−∆t

∫
S

(−∂tc̃r−Rc̃r)φr dx dt. Note we have used the equation
for cr to eliminate some terms. If the diffusion and reaction grids are different,
then some interpolation error is introduced that may be accounted for here.
Note that

{φr(cr − c̃r)} (t = T −∆t) = φr(t = T −∆t)(cr(t = T −∆t)− c̃d(t = T ))

+ φr(t = T −∆t)(c̃d(t = T )− c̃r(t = T −∆t))

= {φd(cd − c̃d)} (t = T ) + φr(t = T −∆t)(c̃d(t = T )− c̃r(t = T −∆t)).

We insert this result above and perform the analogous operations for the diffu-
sion substep. The result is, after integration by parts,

edisc = eNT
r + eNT

d +

∫
S

φr(t = T −∆t)(c̃d(t = T )− c̃r(t = T −∆t)) dx

+

∫
S

{φd(cd − c̃d)} (t = T −∆t) dx,

eNT

d = −
∫ T

T−∆t

∫
S

(−∂tc̃d +D∆c̃d)φd dx dt

+
∑
K∈Ωh

∫ T

T−∆t

∫
∂K+\∂Ω

(Dφd(n̂K · ∇[c̃d])−D(n̂K · ∇φd)[c̃d]) d(∂S) dt

−
∫ T

T−∆t

∫
∂S

n̂ · ∇φd(gd − c̃d) d(∂S) dt.

The advection grid may also be different from the diffusion grid, hence we insert

{φd(cd − c̃d)} (t = T −∆t) = φd(t = T −∆t)(cd(t = T −∆t)− c̃a(t = T ))

+ φd(t = T −∆t)(c̃a(t = T )− c̃d(t = T −∆t))

= {φa(ca − c̃a)} (t = T ) + φd(t = T −∆t)(c̃a(t = T )− c̃d(t = T −∆t))
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and perform the analogous steps for the advection data, resulting in:

edisc = eNT
r + eNT

d + eNT
a +

∫
S

φr(t = T −∆t)(c̃d(t = T )− c̃r(t = T −∆t)) dx

+

∫
S

φd(t = T −∆t)(c̃a(t = T )− c̃d(t = T −∆t)) dx

+

∫
S

{φa(ca − c̃a)} (t = T −∆t) dx,

eNT
a = −

∫ T

T−∆t

∫
S

(−∂tc̃a −∇ · (vc̃a))φa dx dt

+
∑
K∈Ωh

∫ T

T−∆t

∫
∂K+\∂Ω

(−(v · n̂K)φa[c̃a]) d(∂S) dt.

(3.14)
Interpolation between advection and reaction grids is taken into account:

{φa(ca − c̃a)} (t = T −∆t) = {φa(ca − c̃r)} (t = T −∆t)

+ {φa(c̃r − c̃a)} (t = T −∆t)

= {φr(cr − c̃r)} (t = T −∆t) + {φa(c̃r − c̃a)} (t = T −∆t).

Insert this result in (3.14) to obtain

edisc = eNT
r + eNT

d + eNT
a + eNT

interp +

∫
S

{φr(cr − c̃r)} (t = T −∆t) dx,

eNT
interp =

∫
S

φr(t = T −∆t)(c̃d(t = T )− c̃r(t = T −∆t)) dx

+

∫
S

φd(t = T −∆t)(c̃a(t = T )− c̃d(t = T −∆t)) dx

+

∫
S

{φa(c̃r − c̃a)} (t = T −∆t) dx.

Finally, we repeat the above steps over the other time intervals, moving sequen-
tially backward in time, and achieve the final equation

edisc = eA + eD + eR + einterp + eIC ,

eA =

NT∑
i=1

eia, eD =

NT∑
i=1

eid, eR =

NT∑
i=1

eir,

einterp =

NT∑
i=1

eiinterp, eIC =

∫
S

{φs(c0 − c̃)} (t = 0) dx.

(3.15)

In practice it is desirable to write separate code modules to calculate the
advection, diffusion and reaction error contributions. There are two reasons.
One is because each of these error calculations may be independently verified
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as discretization error calculations for their respective sub-problems. This in-
cludes the adjoint solver and the quadrature for the local error calculations.
The second reason is that having localized control over the adjoint solver may
help to optimize the error calculation itself, since the resolution of the adjoint
solution affects the quality of the error estimates. We note that interpolation
amounts to a simple change of deterministic basis. Thus the initial condition
and interpolation error contributions do not require a special treatment for UQ
and are relatively easy to verify.

The advection, diffusion and reaction adjoint modules and error calculations
use only the uncertain parameters for their respective sub-problems. Therefore
the flexible-UQ framework is applied to calculate the global PC expansions
for the primal and adjoint solution data and to use this data within the error
calculation modules.

4 Computational Example

The numerical error may exhibit a complex distribution of values with respect
to the uncertain problem data. As a result, the effects of numerical error with
uncertainty in problem data upon the QoI distribution may be both surprising
and significant. The following computational examples serve to illustrate the
way that error and uncertainty may affect each other.

4.1 Advection-diffusion without reaction

In this example there will be no reaction component; equivalently set R = 0
with no uncertainty in that value. We impose homogeneous Dirichlet boundary
conditions for the advection-diffusion problem. These boundary conditions are
also chosen for the split diffusion problem and for the advection problem at the
inflow boundary. The spatial domain is S = [0, 1]2 and the time interval is
t ∈ [0, 1/2]. The domain S is partitioned into uniform grids of square cells with
respect to which we apply finite volume methods.

The advection direction is independent of space. The advection operator is
discretized using a second-order upwind method with piece-wise linear, unlim-
ited sub-grid slope reconstruction to defined values at cell faces. Time stepping
is implemented using the explicit 4-stage Runge-Kutta method. This method
is applied to both the primal and adjoint advection problems.

The diffusion modules are derived by using a centered second-order sten-
cil for the Laplacian discretization with Crank-Nicholson time stepping. Thus
the overall discretization error for the operator-split methods are second-order
in space and time. The splitting method is as described previously, which is
nominally first-order with respect to the associated time step.

The QoI is defined by the generalized Green’s function

ψ(x, y) =
64

49
(1 + cos(10π(x− 0.7)))4(1 + cos(10π(y − 0.8)))4
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for (x, y) : |x− 0.7| < 0.1 and |y − 0.8| < 0.1 and zero otherwise. This acts as a
local, weighted average of the solution centered at the point (x, y) = (0.7, 0.8)
and results in a fairly smooth adjoint solution with the desired adjoint boundary
conditions (zero Dirichlet). The point is to illustrate the importance that the
distribution of numerical errors may have on understanding model outputs. We
choose a grid with 40 cells in each direction and 18 time steps. The advection
and diffusion grids are the same so that einterp = 0.

First we set D = 0.001 and v =< 0.5, 1.0 > with no uncertainty in the values
and look at the error budget. The results, which are purely deterministic, are
shown in Table 1. We include the usual approximation to the QoI, but we also
include the result of using the numerical error to correct this value, denoted by
M(c). Note that the errors are at least two orders of magnitude smaller than
the size of the QoI value.

M(c̃) 2.4293E − 1
eM −1.6468E − 3
esplit 5.6912E − 5
eA −1.7311E − 3
eD 2.5004E − 5
eIC 2.3796E − 6
M(c) 2.4128E − 1

Table 1: Error budget without parameter uncertainty.

In Table 2 the test is repeated except the y-component of the advection
direction is taken to be in U(0.8, 1.2). The expected values and standard devi-
ations are shown for each quantity. The results differ dramatically from those
of Table 1. The mean of the approximate QoI is significantly different from the
deterministic case and it is unsettling that the variation in the QoI is so large.
Upon examining the error, we see that the numerical error is the culprit, and
moreover it is error from the advection module that is mostly to blame. After
using the error values to correct the output a reasonable model is obtained; the
mean is much closer to that of the deterministic case and the variation is much
less. Thus accounting for the numerical error has made a significant difference
in this problem.

E[·] σ[·]
M(c̃) 1.5418E − 1 2.1229E − 1
eM 1.0300E − 1 2.3567E − 1
esplit 1.7788E − 2 3.9601E − 2
eA 7.9254E − 2 1.7391E − 1
eD 9.9147E − 3 2.2170E − 2
eIC 2.3407E − 6 3.1254E − 7
M(c) 2.5718E − 1 3.4981E − 2

Table 2: Error budget with parameter uncertainty.
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4.2 Advection-diffusion-reaction

The differences between this example and the previous example in 4.1 are that:
we use 12 time steps and 10 grid cells in each direction; the PCE is of order
5; and we set the parameters for reaction, diffusion and the y-component of
advection to be in U(0.8, 1.0).
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